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A theory of multipole mixtures applicable to resonance absorption is developed. The method used is an 
extension of Malus' law to include elliptically polarized multipole mixtures. The case of dipole-quadrupole 
mixtures is treated in detail as a means of measuring E2/MX mixing ratios and checking time-reversal 
in variance in certain nuclei. 

INTRODUCTION 

RECENTLY, Frauenfelder1 and his co-workers have 
I developed and applied the theory of elliptical 

polarization in the Mossbauer effect. In their paper (re­
ferred to hereafter as F) a method of complex vector 
parameterization was used to derive an expression for 
the transmission pattern, 

72 =/ / 'cos 2©, (1) 

such that the factor 7, which is proportional to the in­
tensity of the emitted radiation, can be factored out on 
the right side of Eq. (1). Then 2, which is proportional 
to the absorption cross section, may be found explicitly 
in terms of the Euler angles a, fi for the oriented emitter 
and a'y ft for the oriented absorber. The angular factor, 
cos2©, is given in Table V of F for pure dipole and 
quadrupole radiation and for various values of M and 
Mf, the changes in magnetic quantum number for 
emitter and absorber, respectively. However, this 
method proved too complicated for a convenient treat­
ment of multipole mixtures. It is the purpose of the 
present paper to develop the theory of multipole mix­
tures by a more direct method. 

THEORY 

Let us begin with a modified form of Eq. (38) in F for 
the electric field vector, 

Z21(M) = aE2(M)+bei*E1(M), (2) 

where a and bei<p are products of the appropriate Wigner 
3j symbols and reduced matrix elements x, as explained 
by F. We can choose a, b, and the relative phase of the 
nuclear matrix elements cp to be real numbers. The 
angular dependence is expressed by the vector 

E L W ^ e ^ ^ ^ ^ i M ^ K ^ i ^ i e - - ^ ^ ^ ^ ) ) , (3) 

where the upper signs refer to electric radiation and the 
lower signs to magnetic radiation. We shall be concerned 
with the case of most physical interest, namely, a mix­
ture of magnetic dipole (L= 1) and electric quadrupole 
(L=2) radiation. In the last equation, y is the Euler 
angle measured about the axis of nuclear orientation, 0 

* This work was supported in part by the National Aeronautics 
and Space Administration under Research Grant NsG 670. 

1 H. Frauenfelder, D. E. Nagle, R. D. Taylor, D. R. F. Cochran, 
and W. M. Visscher, Phys. Rev. 126, 1065 (1962). 

is the angle between this axis and the axis of observa­
tion, while a is the azimuthal angle measured about the 
axis of observation. The complex unit vectors are 

fl±i=^(t±ij)/tf (4) 

so that fj^'fjv^dftv, while the rotation matrix elements 
dMM(L) are given in Table II of F, reproduced here as 
Table I. 

The quantity we are interested in is 

I2=\Sn*(M)'S21'(M')\> 
= | aa'E2*(M) • E,'(Af')+<** V*'Ea*(Af) • E / (Mf) 

+a'be-i*E1*(M)>'Et,(M') 
+bVe-«*-*'>Ei*(M) • E/(M /) |2. (5) 

As a first step it is convenient to compute the complex 
numbers listed in Table II by using Eq. (3). From 
Table II and Eq. (5) with a or b set equal to zero, we can 
derive the formulas given in F. For example, with b= V 
= 0, we may compute 72 = | £2*(2)- £2 ' (±2)|2 which 
appears as the last entry in Table III. If in addition we 
let a=a', a=a\ @=ft, and use the upper signs in this 
formula, we find the intensity squared and finally the 
intensity 

7=|a2(4 sin20+sin22/3) = \& sin2/5(l+cos2£). (6) 

We may divide by this quantity to find 

S=(7)-1 |€*.£ , |2=7 /cos2© 

and divide again by V to find 

cos2@=(77 ,)-1|S*-£ ,|2, 

(7) 

(8) 

which appears as the first (or fourth) entry in Table V 
of F. We have omitted subscripts and arguments in 
Eqs. (7) and (8) to indicate their general applicability 
even to multipole mixtures. 

TABLE I. Reduced rotation matrix elements, ^MM ( L ) , 
for dipole and quadrupole cases. 

M <W1} <W2) 

± 1 
± 1 
± 1 
± 1 
± 1 

± 2 
± 1 

0 
=F1 
=F2 

cos2i3/2 
±( l /v2)s in0 
sin2/3/2 

=F(2sinj3+sin2|8)/4 
(cos/3+cos2/3)/2 
=fc(3/8)1/2sin2)8 
(cos/3-cos2/3)/2 
±(2sin/3-sin20)/4 
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TABLE II . Complex numbers E.*(Jf) -E/(.M'). 

M M* E8*(M)-E/(lfO 

(a) Dipole radiation ( s = / = l ) 

1 ± 1 Je-W^CClicos /? cos/30 cos(a-aO - z (cos/3 icosjSO s i n ^ - a ' ) ] 
± 1 0 (l/y/2)eTiy sin/3'[±COS/3 cos(a-a:0 -i sin (a—a')] 

0 0 sin/3 sin/3'cos (a—a!) 

(b) Quadrupole radiation (s—t — 2) 

2 ± 2 zfcJe-^rW sin/3 sin/3'[(l±cos/3 cos/30 cos (a—a/) —* (cos/3 =bcos/80 sin(a—o/)] 
2 ± 1 _ je-t(2rF7') sin/3[(cos/3':±: cos/3 cos2/30 cos (a—a/)—*' (cos/3 cos/3'±cos2/30 sin(a—a/)] 

± 2 0 T (3/8)1 V*'2^ sin/3 sin2/3'[±cos/3 cos(a-aO -*' sin ( a - a / ) ] 
1 ± 1 §e-tW?'>[(cos/3 cos/3'±cos2/3 cos2/30 cos(a—o/) —* (cos/3'cos2/3±cos/3 cos2/30 sin(a—a')] 

d=l 0 (3/8)1 V*> sin2/3'[±COs2/3 cos(a-aO - * cos/3 s in (a -a / ) ] 
0 O f sin2j8 sin2/3' cos(a-oO 

(c) Cross terms (s = l, J=2) 
1 ± 2 ^Ag-iCy^') sin/3'[(cos/3±cos/3') cos (a—a') -*(1±COSJ3 cos/30 sin (a—a/)]. 
1 ± 1 f<r*W?'>[ (cos/3 cos/3'±cos2/3') COs(a—a')—*(cos/3'=kcos/3 cos2/3') sin (a—a/)] 

dbl 0 (3/8)1/26TF*> sin2j8/[cos(a-aO=F* cos/3 s in(a-aO] 
0 ± 2 ^ l / S ^ ) ^ ' 2 ? ' sinjS s i n ^ ' C c o s ^ - a ' ) ^ ' cos/3' s i n (a -V) ] 
0 ± 1 ( l / v ^ ) ^ ' sin/3[cos/3' c o s ^ - a ' ) ^ cos2/3' sin(a—</)] 
0 0 -ityS/2) sin/3 sin2/3/ sin(a-aO 

Before proceeding further, let us derive two auxiliary 
formulas which may be used to fill out Table II. The 
first is hardly more than a rearrangement of the 
quantities involved, as follows: 

ES*(M) • E/(M') = [E.(Jf) • E/*(Af')]* 
= [E,*(M0-E/(M)],*, (9) 

where subscript x denotes the operation a <-> a', /? <-> 0', 
7 <-> 7'. This formula is convenient for finding such 
quantities as ES*(M)-E/(M') from Et*(M')-Es'(M). 
The second formula is 

E s *( -M)-E / (TM0 
= (-l)«[E.*(JJf).E/(d=M ,)]*> (10) 

where w=ikT+ikf/+(l—5«<) and 5S* is the Kronecker 
delta. It is useful for obtaining ES*(-M)-E/(=FM"/) 
from E8*(M)'Et(dzM'). We may prove it by using 
Eq. (3) in Eq. (10) and equating the coefficients of the 
exponentials in the resulting expression. Thus we must 
show that 

d i - i f ^ i * J P ' ( 0 = ( - I ^ + ^ - I M ^ - W ^ (11) 

and 

d1MVd1±M/w= ( - W+wd+MMd-w'W, (12) 

where we have ignored the symbol for the complex 
conjugate since the dMM(L) are real. These relations 
follow from the equation 

dl±M(L)=(-l)1+Md^L\ (13) 

which can be obtained from an examination of Table I 
or, in the general case, from Eq. (4.19) of Rose.2 

2 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), p. 54. 

By using Eqs. (9) and (10) to complete Table II we 
may now construct Table III from Eq. (5). In the last 
three entries of Table III one or both of the dipole 
components is missing, so that two of these formulas 
are only partial mixtures while the last is pure quad­
rupole. However, they are included for the sake of 
completeness. In order to fill out Table III we can 
employ two auxiliary transformations. To find I2(M,M') 
from 72(ifcf',M)> we use 

(aMM)++(c/jr,a',bW), (14) 

that is, exchange corresponding primed and unprimed 
quantities. To find 72(-il7, =FAf') from 72?(If, ±M') , 
we use 

(#,#'\b,V\<p,<pr) <-> (a, a\ — b, —b', — <p, — <p') (15) 

with the Euler angles unchanged. These transformations 
may be proved by writing out Eq. (5) for the quantities 
involved and using Eqs. (9) and (10) to transform one 
into the other. The transformation y<r+yf is not in­
cluded in Eq. (14) since this angle does not appear in the 
final result 72. 

We may also compute the intensities given in Table 
IV from the first and third entries in Table III by using 
the upper signs and letting a=a', b=b', a=a', and 
/3=/3'. This gives us 72i(0) and 72i(+l) when we take 
the square root. If we use transformation (15) to find 
72(— 1, =Fl), we may then obtain 72i(— 1) by the same 
procedure. Similarly, from the last entry in Table III 
we obtain 72(±2) as in Eq. (6). 

Finally, we note from Eq. (3) that electric and 
magnetic multipoles differ only in the sign of ?)_i. As a 
result of this, Tables II, III, and IV are the same for a 
magnetic quadrupole-electric dipole mixture as for the 
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TABLE III. Transmission factors 72 = | £21* (If) • £21' (Af) |2. 

M W TL 

0 0 sin2/3 sin2j8'{|[(3aa' cos/3 cos/3'+6&' cos(^~ <pf)) cos(a-~a')-\-y/3(ab' sin*?' cos/3—ha! €\vap cos/3') sin(a—a')]2 

-\-\y3(ab' cos<p' co$p-{-baf cos<p cos/3') sin (a—a') +&&' sin(<p— <?') cos (a—a')]2} 
± 1 0 J sin2/3'{[(\#aa' cos/3' cos2/3+a&' cos<p' cos/3+"v36a' cos/3' coŝ >±&&' cos(v?~ <p') cos/3) cos (a—a') 

±(ab' sin#>' cos2/3—v3fo' cos/3' sin^ cos/3=FW sin(̂ >— ̂ ')) sin(a:—a')]2 

+[(^J5aaf cos/3' cos/3rlza&' cos^' cos2/3±v3^a' cos/3' cos/3 cos<p+W cos(̂ >— <p')) sin(a—a') 
+ (—ah' sin<p' cos/3-}-V3&a' cos/3' sin<p±&&' sin(̂ >— <p') cos/3) cos (a—a')]]2} 

1 ± 1 i{[W(cosj8 cos/3'±cos2/3 cos2/3')+a6' cos«?'(cos2/3:±:cos/3 cos/3') 
-f-foz' cos^>(cos/3 COSJS'±COS2/3')+^ / cos(̂ >— ̂ >')(l±cos/3 cos/3')] cos(a—a') 
+Ca&'(cosjS=t:Cos/3' cos20) — 6a' sin<p(cos/3'±cos/3 cos2/3')—W sin(̂ >— ̂ ') (cos/3±cos/3')] sin(a—a')}2 

-f J { [W (cos/3' COS2/3±COSJ3 cos2/3')-}-a&' cos??'(cos/3 ± cos/3' cos2/3) 
+&a' cos£>(cos/3'±cos/3 cos2/3')-W cos(̂ >— ̂ ') (cos/3±cos0')] sin(a—a') 
-{•[_—ab' sin^'(cos2/3dbcos/3 cos/3') +ba' sin^>(cos/3 cos/3'±cos2/3') 
+66' sin(<p— <p')(l=bcos/3 cosjS')] cos(a—a')}2 

± 2 0 J sin2/3 sin2j8'{[(±V^aa' cos/3 cos/3'-fa&' cos*?') cos(a:-a:')=fc:a&' sin<p' cos/3 sin ( a - a ' ) ] 2 

-+-[(V3aa' cos/3'dba&' cos<p' cos/3) sin(a—a!) — aft' sin^>' cos (a—a')]2} 
2 rfcl i sin2/3{[(aa'{cos/3':±:Cos/3 cos2/3'}+a&' cos^'{cos/3±cos/3'}) cos(a-a ' ) 

+abf sin^'(ldLcos/3 cos/3') sin (a—a')]2 

-f[(<za'{cos/3 cos/3'±cos2/3'}-r-a&' cos^'{l±cos/3 cos/3'}) smfc-a ' ) ~-ab' sin<p'(cos/3±cos/3') cos (a -a ' ) ] 2 } 
2 ± 2 \a?a'2 sin2/3 sin2/3'[(cos/3±cosj3')2-r-sin2/3 sin2/3' cos2(a:-a')] 

electric quadrupole-magnetic dipole mixture we have 
been describing, although only the latter is of much 
physical interest, 

EXPERIMENTAL POSSIBILITIES 

Angular correlation measurements have been fre­
quently used to determine the mixing ratio a/b and the 
relative phase <p.z At first4 allowance was made for the 
possibility that the ratio is a complex number, a/(bei(f>). 
However, Lloyd5 showed that the assumption of time-
reversal invariance limits <p to the values 0 or T. Since 
the discovery of violations of the validity of parity 
conservation, attention has been turned toward experi­
mental methods of checking time-reversal invariance 
too.6-8 More recently, the Mossbauer effect has been 
proposed9 as a technique for polarizing the daughter 
nucleus in an angular correlation experiment involving 
time-reversal and parity, and has been used10 in a 
coincidence experiment to determine the E2/M1 mixing 
ratio of the 123-keV transition in Fe57. 

The results of our paper might be used to determine 
a/b and (p for nuclei which show the Mossbauer effect11 

3 For example, T. Tamura and H. Yoshida, Nucl. Phys. 30, 579 
(1962). 

4 D. S. Ling, Jr., and D. L. Falkoff, Phys. Rev. 76, 1639 (1949). 
5 S. P. Lloyd, Phys. Rev. 81, 161 (1951). 
6 M. Morita and R. S. Morita, Phys. Rev. 107,1316 (1957); 110, 

461 (1958). 
7 E. M. Henley and B. A. Jacobsohn, Phys. Rev. 113, 225 

(1959). 
8 B. A. Jacobsohn and E. M. Henley, Phys. Rev. 113, 234 

(1959). 
9 M. Morita, Phys. Rev. 122, 1525 (1961). 
10 H. de Waard and F. van der Woude, Phys. Rev. 129, 1342 

(1963). 
11 Third International Conference on the Mossbauer Effect, 

edited by A. J. Bearden, Rev. Mod. Phys. 36, 496 (1964). 

and are known to emit mixed E2/M1 radiation.12 

Although only a limited number of such nuclei are 
known, and the Mossbauer effect requires the ground 
state to be the final state of a low-energy (<150-keV) 
transition, still Zeeman experiments using only the 
Mossbauer effect can serve as a complement to the 
techniques described above. Of particular interest would 
be a more accurate check of time-reversal invariance for 
such nuclei. 

CONCLUSION 

The theory of dipole-quadrupole mixtures has been 
presented in detail for emitter and absorber nuclei 
oriented in magnetic fields so that separated Zeeman 
lines appear. The method used is a traditional one since 
it amounts to an extension of Malus' law, discussed in 
most texts on optics. Both £ (the "polarizer") and £' 
(the "analyzer") are projections of the electric vectors 
on the plane of observation, the 971, rj-i or i, j plane. 
Malus' cos2(a—a) law holds for the case of plane-
polarized radiation, M=M'=0. It is obtained by pro­
jecting one vector on the other, squaring the magnitude 

TABLE IV. Intensities for quadrupole-dipole mixtures. 

/«(0) = 

l2 l (± l ) = 

7s(=b2) = 

= (3/4)a2 sin22/3+62 sin2/3 
= J02(cos2/3-hcos22/3) 

±2a& cos??(cos2/?+cos 
= (l/8)a2(4sin2/3+sin22/3) 

i2/3)-R2(l+cos V)l 

12 G. N. Belozerskii and Yu. A. Nemilov, Usp. Fiz. Nauk 72, 433 
(1960) [English transl.: Soviet Phys.—Usp. 3, 813 (1961)]. 
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of the result and dividing by the intensities as in Eq. 
(8). We have extended this method to include elliptically 
polarized radiation for multipole mixtures and the pure 
multipoles which are special cases of these mixtures. 

INTRODUCTION 

THE 0.685-MeV 39Y51
90w level (rV2=3.14 h) has 

been shown1-4 to gamma decay to an 0.203-MeV 
level and then to the ground state in a simple cascade 
with no measurable crossover. Spins and parities of 
7+ for the 0.685 MeV level and 3 - for the 0.203-MeV 
level have been established by the above groups, the 
ground-state spin and parity being previously estab­
lished as 2— by Bartholomew.5 From shell-model con­
siderations, the 39th proton is in the p^ shell and the 
51st neutron is in the J5/2 shell outside of a g9/2 closed 
shell of 50 neutrons.6 This implies that the 2— ground 
state and the 3— state result from the (py 2^6/2) con­
figuration. The simplest assumption as to the configura­
tion of the 7+ isomeric level is to promote one proton 
into the gg/2 shell, creating the (#9/2̂ 5/2) configuration, 
and allowing the gamma decay from this state to in­
volve a change only in the state of one nucleon. 

The levels in 4oZr5o
90 have been studied by Ford,7 

Sheline,8 Lazar et al.,9 Bjo'rnholm et al.,10 and Bay man 
et al.11 In his study of this nucleus, Ford7 has shown 

t This work was supported in part by the U. S. Atomic Energy 
Commission under Contract AT-(40-l)-2434. ^ 

* Supported in part by the "Fonds National Suisse de la 
Recherche Scientifique." 

1 R. L. Heath, J. E. Cline, C. W. Reich, E. C. Yates, and E. H. 
Turk, Phys. Rev. 123, 903 (1961). 

2 C. Carter-Waschek and B. Linder, Nucl. Phys. 27, 415 (1961). 
3 W. S. Lyon, J. S. Eldridge, and L. C. Bates, Phys. Rev. 123, 

1747 (1961). 
4W. L. Alford, D. R. Koehler, and C. E. Mandeville, Phys. 

Rev. 123, 1365 (1961). 
6 G. A. Bartholomew, P. J. Campion, J. W. Knowles, and 

G. Manning, Nucl. Phys. 10, 590 (1959). 
6 P. F. A. Klinkenberg, Rev. Mod. Phys. 24, 63 (1952). 
7 K. W. Ford, Phys. Rev. 98, 1516 (1955). 
8 R. K. Sheline, Physica 23, 923 (1957). 
9 N. H. Lazar, G. D. O'Kelley, J. H. Hamilton, L. M. Langer, 

and W. G. Smith, Phys. Rev. 110, 513 (1958). 
10 S. Bjornholm, O. B. Nielsen, and R. K. Sheline, Phys. Rev. 

115, 1613 (1959). 
1 1B. F. Bayman, A. S. Reiner, and R. K. Sheline, Phys. Rev. 

115, 1627 (1959). 

Since Eqs. (3) and (13) are perfectly general, the 
method may be extended to multipole mixtures of any 
order. Possible use of these results in experiments has 
also been briefly described. 

that the low-lying states in Zr90 should be determined 
by the proton configurations (pi/2)2, fe/2)2, and (̂ 1/2̂ 9/2). 
Sheline8 first observed the low-lying expected levels 
of (1.752 MeV)o+, (2.182 MeV)^, and (2.315 MeV)5-
by populating them through the decay of Nb90. Due to 
its spin, the 5— level can be unambiguously assigned 
to the (pi/2g9/2) orbital. Experimentally, this level was 
found to decay 84% to the ground state with an £5 
gamma and 14% to the 2.182-MeV level by an E3 
gamma transition. Furthermore, it was shown8-10 that 
the ground state and the first excited state should both 
be mixtures of (g9/2)2 and (pi/2)2 configurations. 

The relative population of the ground and first ex­
cited 0+ states in Zr90 by the Y90 ground state12 through 
p- decay and by the Zr90 (2.182)2+ state through 7 
decay, establishes8'10,11 that the ground-state configura­
tion is 63% (£i/2)2+37%fo/2)2. 

THEORETICAL 

By examining the initial and final configurations of 
the states involved in the beta transition between the 
ground states of Y90 and Zr90, it can be seen that this 
transition can be described as the transformation of a 
5̂/2 neutron into a pi/2 proton. In a similar fashion, the 
(#9/2̂ 5/2) 7+ isomeric state in Y90 could be expected to 
decay into the (#1/2^9/2)5- excited state in Zr90 by a 
J5/2 neutron transforming via a new beta transition into 
a pi/2 proton. 

Not only will it be reasonable to expect that the log// 
value for the two beta decays should be similar, but 
that one should be able to predict the log// value of the 
new transition by using the log// value of the ground-
state transition after including the percentage (63%) 
of mixing of the ground-state configuration in Zr90 and 
a geometrical factor. The geometrical factor is needed 

12 O. E. Johnson, R. G. Johnson, and L. M. Langer, Phys. Rev. 
98, 1517 (1955). 
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Beta Decay of Y90mf 
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An 0.620-MeV fr branch has been observed to compete with the previously reported gamma decay from 
the 3.14-h Y90™. The calculated values, derived from the shell model for the branching ratio [(0.620-MeV/3~)/ 
(0.482-MeV y) = 1.16X 10~3] and the log ft (7.54) are compared with the experimental values of 3.8±1 X 10~3 

and 7.04±0.13, respectively. The small discrepancy is probably due to impurities in the shell-model con­
figurations assumed for the transition. 


